Bayesian Spike-Triggered Covariance Analysis

نویسندگان

  • Il Park
  • Jonathan W. Pillow
چکیده

Neurons typically respond to a restricted number of stimulus features within the high-dimensional space of natural stimuli. Here we describe an explicit modelbased interpretation of traditional estimators for a neuron’s multi-dimensional feature space, which allows for several important generalizations and extensions. First, we show that traditional estimators based on the spike-triggered average (STA) and spike-triggered covariance (STC) can be formalized in terms of the “expected log-likelihood” of a Linear-Nonlinear-Poisson (LNP) model with Gaussian stimuli. This model-based formulation allows us to define maximum-likelihood and Bayesian estimators that are statistically consistent and efficient in a wider variety of settings, such as with naturalistic (non-Gaussian) stimuli. It also allows us to employ Bayesian methods for regularization, smoothing, sparsification, and model comparison, and provides Bayesian confidence intervals on model parameters. We describe an empirical Bayes method for selecting the number of features, and extend the model to accommodate an arbitrary elliptical nonlinear response function, which results in a more powerful and more flexible model for feature space inference. We validate these methods using neural data recorded extracellularly from macaque primary visual cortex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Neural Gain Control using Spike-triggered Covariance

Spike-triggered averaging techniques are effective for linear characterization of neural responses. But neurons exhibit important nonlinear behaviors, such as gain control, that are not captured by such analyses. We describe a spike-triggered covariance method for retrieving suppressive components of the gain control signal in a neuron. We demonstrate the method in simulation and on retinal gan...

متن کامل

Convolutional spike-triggered covariance analysis for neural subunit models

Subunit models provide a powerful yet parsimonious description of neural responses to complex stimuli. They are defined by a cascade of two linear-nonlinear (LN) stages, with the first stage defined by a linear convolution with one or more filters and common point nonlinearity, and the second by pooling weights and an output nonlinearity. Recent interest in such models has surged due to their b...

متن کامل

Learning Quadratic Receptive Fields from Neural Responses to Natural Stimuli

Models of neural responses to stimuli with complex spatiotemporal correlation structure often assume that neurons are selective for only a small number of linear projections of a potentially high-dimensional input. In this review, we explore recent modeling approaches where the neural response depends on the quadratic form of the input rather than on its linear projection, that is, the neuron i...

متن کامل

Convergence Properties of Some Spike-Triggered Analysis Techniques

vVe analyze the convergence properties of three spike-triggered data analysis techniques. All of our results are obtained in the setting of a (possibly multidimensional) linear-nonlinear (LN) cascade model for stimulus-driven neural activity. We start by giving exact rate of convergence results for the common spike-triggered average (STA) technique. Next, we analyze a spike-triggered covariance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011